The Architectural Implications of Facebook's DNN-based Personalized Recommendation

<u>Udit Gupta</u>, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen

David Brooks, Bradford Cottel, Kim Hazelwood, Mark Hempstead, Bill Jia, Hsien-Hsin S. Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, Xuan Zhang

IEEE Intl. Symposium on High-Performance Computer Architecture HPCA 2020, Session 7a

Personalized recommendation is everywhere

Personalized recommendation is everywhere

Microsoft YouTube amazon NETFLIX

Personalized recommendation is everywhere

Microsoft You Tube

NETFLIX

"35% of purchases on Amazon and 75% of videos on Netflix are powered by recommendation algorithms" McKinsey & Co

Al inference cycles in Facebook's datacenter

Al inference cycles in Facebook's datacenter

Recommendation uses cases account for over 80% of all Al inference cycles in Facebook's datacenter.

Al inference cycles in Facebook's datacenter

https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/

Recommendation uses cases account for over 80% of all Al inference cycles in Facebook's datacenter.

Given Facebook's datacenters perform 200+ trillion inferences every day, optimizing DNN-based recommendation is key.

Algorithm

Algorithm

General model structure

Optimize operators with new storage, compute, and memory access patterns

Algorithm

General model structure

Diverse networks architectures

Optimize operators with new storage, compute, and memory access patterns

Accelerate recommendation with flexible and diverse system solutions

Algorithm

General model structure

Diverse networks architectures

At-scale inference

Optimize operators with new storage, compute, and memory access patterns

Exploit hardware heterogeneity and parallelism to optimize latency-bounded throughput

Hardware insights and opportunities

Accelerate recommendation with flexible and diverse system solutions

Algorithm

General model structure

Diverse networks architectures

At-scale inference

Optimize operators with new storage, compute, and memory access patterns

Accelerate recommendation with flexible and diverse system solutions

Exploit hardware heterogeneity and parallelism to optimize latency-bounded throughput

Continuous (dense) features

Continuous Age Dense DNNs (dense) Time of day features

Filtering

Production datacenters exploit Data (batching)-level and task (co-locating models)-level parallelism for serving recommendations at-scale.

Storage capacity

Storage capacity

Up to tens of GBs

Up to tens of GBs

Up to tens of GBs

Orders of magnitude lower FLOPs/Byte

Up to tens of GBs

Orders of magnitude lower FLOPs/Byte

Up to tens of GBs

Orders of magnitude lower FLOPs/Byte

Sparse, irregular memory accesses

Memory access pattern

Sparse, irregular memory

Specialized caching and pre-fetching capabilities

Hardware insights of recommendation

Algorithm

General model structure

Diverse networks architectures

At-scale inference

Optimize operators with new storage, compute, and memory access patterns

Accelerate recommendation with flexible and diverse system solutions

Exploit hardware heterogeneity and parallelism to optimize latency-bounded throughput

Hardware insights and opportunities

Facebook's DLRM: Configurable benchmark for end to end models

"Deep Learning Recommendation Model for Personalization and Recommendation Systems" Naumov, et. al.

"Deep Learning Recommendation Model for Personalization and Recommendation Systems" Naumov, et. al.

Compute bound

41

"Deep Learning Recommendation Model for Personalization and Recommendation Systems" Naumov, et. al.

42

"Deep Learning Recommendation Model for Personalization and Recommendation Systems" Naumov, et. al.

Benchmarks represent key models in Facebook's datacenter

Al inference cycles in Facebook's datacenter

Benchmarks represent key models in Facebook's datacenter

Al inference cycles in Facebook's datacenter

Benchmarks represent key models in Facebook's datacenter

Al inference cycles in Facebook's datacenter

	RM1	RM2	RM3
Stage	Filtering	Ranking	Ranking
FC sizes	Small	Medium	Large
Number of embedding table	Few	Many	Few
Size of embeddings	Small	Medium	Large
Number of lookups per table	Hundreds	Hundreds	Tens

46

optimize recommendation mo

Hardware insights of recommendation

Algorithm

General model structure

Diverse networks architectures

At-scale inference

Exploit hardware heterogeneity and parallelism to optimize latency-bounded throughput

Hardware insights and opportunities

Optimize operators with new storage, compute, and memory access patterns

Accelerate recommendation with flexible and diverse system solutions

Ranking more items improves recommendation quality

High throughput!

Ranking more items improves recommendation quality

High throughput!

Low latency!

Ranking more items improves recommendation quality

High throughput!

Optimize latency-bounded throughput

Models

Models

Data parallelism: Characterizing latency bounded throughput design space

Batch=16

Batch=128 Batch=256

Data parallelism: Characterizing latency bounded throughput design space

Increasing data-level parallelism (batch-size)

Data parallelism: Characterizing latency bounded throughput design space

Increasing data-level parallelism (batch-size)

Data parallelism: Characterizing latency bounded throughput design space

- At smaller batch-sizes Broadwell has 1.4x lower batch latency
 - Haswell: 50% lower DRAM frequency
 - Skylake: 20% lower CPU frequency and lower AVX-512 utilization (70%)

Data parallelism: Characterizing latency bounded throughput design space

At higher batch-sizes Skylake has lower batch latency
Wider vector width and higher AVX-512 utilization (90%)

Data parallelism: Characterizing latency bounded throughput design space

Solutions must co-design data-level parallelism with application target, recommendation models, and hardware platforms

Models

Latency critical and applications

• • •	

Latency critical application

batch processing

ſ				1
		 _	5	
		 	Ħ	
М			7	1
	6	•		
		_	=	

Latency critical

application

Target latency

Latency critical and batch processing applications

	5
• • •	

Latency critical

application

	1
	1

Latency critical

application

Latency critical and batch processing applications

Latency critical application	Bat
Latency critical	Bat

application

• • •

tch processing application tch processing application

> Target latency

Latency critical and batch processing applications

	Latency critical
••••	application

Latency critical

application

Co-locating recommendation models

• • •

Recommendation inference

Recommendation inference

Target latency

Co-locating models improves recommendation quality and reduces infrastructure capacity

Latency critical and batch processing applications

Latency critical application	Ba
Latency critical	Ba

• • •

• •

Co-locating recommendation models

Increase the amount of work (*items ranked*)

Co-locating models improves recommendation quality and reduces infrastructure capacity

Latency critical and batch processing applications

Latency critical application	Ba
Latency critical application	Ba

Co-locating recommendation models

Recommendation inference	•••	
Recommendation		
inference	•••	

Increase the amount of work (items ranked)

Task parallelism: Characterizing latency bounded throughput

Inclusive L2/L3 caches

Inclusive L2/L3 caches

Task parallelism: Characterizing latency bounded throughput

Solutions must co-design task-level parallelism with application target, recommendation models, and hardware platforms

See the paper for more details!

Performance variability

Impact of co-locating models on performance variability

See the paper for more details!

Performance variability

Impact of co-locating models on performance variability

82 "Deep Learning Recommendation Model for Personalization and Recommendation Systems" Naumov, et. al.

Open-source

Model configurations using Facebook's open-source DLRM

Open-source data sets

In this talk: Architectural Implications of Facebook's **DNN-based Personalized Recommendation**

Importance of recommendation models

Diversity of recommendation models

Models have varying and unique performance characteristics

> Design flexible hardware solutions

https://personal-tutorial.com/

At-scale inference

Optimize for latency-bounded throughput

Co-design parallelism, application target, models, and hardware

In this talk: Architectural Implications of Facebook's **DNN-based Personalized Recommendation**

Importance of recommendation models

Diversity of recommendation models

Models have varying and unique performance characteristics

> Design flexible hardware solutions

https://personal-tutorial.com/

At-scale inference

Optimize for latency-bounded throughput

Co-design parallelism, application target, models, and hardware

