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Al inference cycles in Facebook’s datacenter

Recommendation uses cases
account for over 80% of all
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Benchmarks represent key models in Facebook’s datacenter

Al inference cycles in Facebook’s datacenter
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Data parallelism: Characterizing latency bounded
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Data parallelism: Characterizing latency bounded
throughput design space
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* At smaller batch-sizes Broadwell has 1.4x lower batch latency

- Haswell: 50% lower DRAM frequency

- Skylake: 20% lower CPU frequency and lower AVX-512 utilization (70%)
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Data parallelism: Characterizing latency bounded
throughput design space
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Co-locating models improves recommendation quality and
reduces infrastructure capacity
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Task parallelism: Characterizing latency bounded
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See the paper for more details!

Performance variability
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See the paper for more details!
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“Deep Learning Recommendation Model for Personalization and Recommendation Systems” Naumov, et. al. 32
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