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Personalized recommendation is everywhere

“35% of purchases on Amazon and 75% of videos on Netflix are 
powered by recommendation algorithms”

McKinsey & Co
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Recommendation uses cases

account for over 80% of all 
AI inference cycles in 

Facebook’s datacenter.

Given Facebook’s datacenters 
perform 200+ trillion 
inferences every day, 

optimizing DNN-based 
recommendation is key.

https://engineering.fb.com/data-center-engineering/accelerating-infrastructure/
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Data (batching)-level and 

task (co-locating models)-level parallelism
for serving recommendations at-scale. 
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Embedding tables pose new challenges

Storage capacity

Up to tens of GBs

Compute intensity

Orders of magnitude 
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Sparse, irregular memory 
accesses

Off-chip memory
(DRAM, NVM)

New accelerator designs
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AI inference cycles in Facebook’s datacenter
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Stage Filtering Ranking Ranking

FC sizes Small Medium Large
Number of embedding table Few Many Few

Size of embeddings Small Medium Large
Number of lookups per table Hundreds Hundreds Tens
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Broadwell

• At smaller batch-sizes Broadwell has 1.4x lower batch latency
- Haswell: 50% lower DRAM frequency
- Skylake: 20% lower CPU frequency and lower AVX-512 utilization (70%)

1.4x

RM2



• At higher batch-sizes Skylake has lower batch latency
- Wider vector width and higher AVX-512 utilization (90%)
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Solutions must co-design task-level parallelism with 
application target, recommendation models, and hardware platforms 
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Performance variability Open-source 

Model configurations using 
Facebook’s open-source DLRM

Open-source data sets

Impact of co-locating models
on performance variability

“Deep Learning Recommendation Model for Personalization and Recommendation Systems” Naumov, et. al.
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